Rsa I

5' ···GT▼AC···3'
3' ···CA▲TG···5'

Rsal is a restriction enzyme purified from *Rhodopseudomonas sphaeroides*.

<u>Catalogue No</u> 129-1, 1000 U 129-2, 3x1000 U

Concentration 10-12u/μl and 40-

60u/μl*

Reagents supplied: 10x M and 10x K

buffer

Unit substrate: Lambda DNA.

Unit calculation assay conditions: 50 mM NaCl, 10 Tris-HCl (pH 7.9 @ 25°C), 10 mM MgCl₂, 1 mM dithiothreitol, 100 μ g/ml BSA. Incubate at 37°C.

Absence of contaminants: 400 units of Rsa I do not produce any unspecific cleavage products after 16 hrs incubation with 1 μg of λ DNA at 37°C. After 10-fold overdigestion with Rsa I, greater than 95% of the DNA fragments can be ligated and recut with this enzyme.

Storage buffer: 50 mM KCl, 10 mM Tris-HCl (pH 7.4), 0.1 mM EDTA, 1 mM dithiothreitol, 200 μ g/ml BSA and 50% glycerol. Store at -20°C.

Heat inactivation: 65°C for 20 minutes.

Methylation Sensitivity:

dam methylation: Not sensitive dcm methylation: Not sensitive

CpG methylation: Blocked by some

combinations of overlapping

Note: Cleaves single-stranded DNA slowly.

Percent Activity in MINOTECH Buffers

L	М	Н	SH	Α	К
75-100	100	50	<10	<10	100

General reaction mixture:

10U Rsal	1μΙ		
10x M or K buffer *	2μl		
DNA substrate	<1µg		
Sterile ultrapure water	Up to 20 μl		
Incubate for 15 min at 37°C			

^{*}In the case of M buffer we recommend the addition of BSA to a final concentration of $100 \mu g/ml$.

Frequency of Cutting

λ	Ad-2	Фх174	pUC18	M13mp18	pBR322
113	83	11	3	19	3

Lambda DNA 1.4 % agarose

^{*}Add an H to cat.# to order the high concentration